skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hedlund, Johanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Compound climate hazards, such as co-occurring temperature and precipitation extremes, substantially impact people and ecosystems. Internal climate variability combines with the forced global warming response to determine both the magnitude and spatial distribution of these events, and their consequences can propagate from one country to another via many pathways. We examine how exposure to compound climate hazards in one country is transmitted internationally via agricultural trade networks by analyzing a large ensemble of climate model simulations and comprehensive trade data of four crops (i.e. wheat, maize, rice and soya). Combinations of variability-driven climate patterns and existing global agricultural trade give rise to a wide range of possible outcomes in the current climate. In the most extreme simulated year, 20% or more of the caloric supply in nearly one third of the world’s countries are exposed to compound heat and precipitation hazards. Countries with low levels of diversification, both in the number of suppliers and the regional climates of those suppliers, are more likely to import higher fractions of calories (up to 93%) that are exposed to these compound hazards. Understanding how calories exposed to climate hazards are transmitted through agricultural trade networks in the current climate can contribute to improved anticipatory capacity for national governments, international trade policy, and agricultural-sector resilience. Our results highlight the need for concerted effort toward merging cutting-edge seasonal-to-decadal climate prediction with international trade analysis in support of a new era of anticipatory Anthropocene risk management. 
    more » « less
  2. Wetlands are often vital physical and social components of a country’s natural capital, as well as providers of ecosystem services to local and national communities. We performed a network analysis to prioritize Sustainable Development Goal (SDG) targets for sustainable development in iconic wetlands and wetlandscapes around the world. The analysis was based on the information and perceptions on 45 wetlandscapes worldwide by 49 wetland researchers of the Global Wetland Ecohydrological Network (GWEN). We identified three 2030 Agenda targets of high priority across the wetlandscapes needed to achieve sustainable development: Target 6.3—“Improve water quality”; 2.4—“Sustainable food production”; and 12.2—“Sustainable management of resources”. Moreover, we found specific feedback mechanisms and synergies between SDG targets in the context of wetlands. The most consistent reinforcing interactions were the influence of Target 12.2 on 8.4—“Efficient resource consumption”; and that of Target 6.3 on 12.2. The wetlandscapes could be differentiated in four bundles of distinctive priority SDG-targets: “Basic human needs”, “Sustainable tourism”, “Environmental impact in urban wetlands”, and “Improving and conserving environment”. In general, we find that the SDG groups, targets, and interactions stress that maintaining good water quality and a “wise use” of wetlandscapes are vital to attaining sustainable development within these sensitive ecosystems. 
    more » « less